Systronix White Paper -- Why Use Java?
Bruce Boyes, Systronix Inc.
http://www.systronix.com
http://www.PracticalEmbeddedJava.com
First Draft

JCX is an approximate acronym for "Java Control System". It is intended for use in
industrial, educational, and robotic applications. JCX is not just one technology, rather,
it is a system architecture built upon multiple open standards. JCX is programmed in
native-execution, realtime Java. We believe Java is the biggest news to come to the
embedded space since C arrived over 20 years ago.

Everyone has heard of Java, but it is still a relative newcomer to small embedded
systems, especially realtime systems. Some are incredulous upon hearing that our
industrial and robotic systems are programmed in Java. This paper is written to answer
the most common questions about embedded Java, and specifically native-execution
Java.

This document and many others are available online at http://www.jcx.systronix.com
Why consider Java in the first place?

Java is a modern, object-oriented language based on open, public standards. Java is
much more standardized and has a much richer collection of core functions than any
other general-purpose computer language. Many models of the so-called real world
lend themselves well to representation by objects.

Objects can give your programs a degree of modularity which makes them easier to
understand and maintain. It's possible to provide users of your code with a consistent,
public API (Application Programming Interface) while keeping the implementation
details private.

Most developers are aware that Java applications can execute with little or no change
on multiple hardware platforms. This is not really the main benefit of Java - robustness
and reliability is. Still, portability of code is a compelling benefit. When you consider
embedded systems with their typically unique interfaces to hardware devices, and often
peculiar user interfaces, you can imagine that such portions of the program will not be
so easily portable, even in Java, and this is true. Even there, Java code can be written
using techniques such as abstract classes and the class.forname method so that your
application can dynamically bind to the correct hardware-specific runtime support it
needs. We use this technique to support or SBX2 LCD and keypad drivers on hardware
as radically different as Sade and TINI.

There are excellent, free Java development tools such as the IBM Eclipse IDE
(Integrated Development Environment). There is a huge community of Java
programmers, many of whom make their work available for use by others.



What makes Java better than C/C++?

. Java is not magical, it just uses about 30-year newer technology than C. When C
first appeared, networking did not exist. Objects were unknown. Systems with 32
KBytes of memory were considered large. All this has changed in the past 30
years. So you would hope that programming languages would also change to
keep up.

. The core Java APl is very rich and includes standard packages for serial 1/O,
Ethernet and internet access, security, graphics, sound, and other typical
functions. This means, for example, that Java programs which use the
javax.comm package can literally execute unchanged on multiple Java platforms.
We do this routinely on such different platforms as JStamp, JStik, SaJe,
TStik/TINI, SNAP, and the PC. C/C++ has no such standard support, and C
programmers have never been able to enjoy this level of portability.

. Java has a consistent set of proven and stable APIs for TCP/IP networking, and
has had from day one. No other language can claim that. | don't know about you,
but one thing that drives me batty about C is the plethora of non-standard,
arbitrary add-on packages for serial and network I/O. How many of these do you
want to learn in your life?

. Java has a very robust, mature security model which is has been pounded on by
a huge community. You can't say the same for Vendor X's custom C-language
TCP/IP stack and security provisions.

. Java has built-in exception handling, which C lacks completely. It's possible to
circumvent Java's good intentions but at least you have to consciously do so. C
gives you no help at all.

. Java programs are potentially much more reliable. C has essentially no runtime
error checking, memory allocation is all manual, etc. Java does memory
management automatically, bounds-checks array access, etc so it handles the
big problems for you.

. Programmer productivity is at least 2X greater with Java. You can get a lot done
in a short amount of time with Java because it has such a rich library of functions
already built into the language. There is a huge amount of open source, free
software which you can probably leverage -- and most of the time it will actually
compile and run on *your* hardware!

. Java code can be tested and debugged on a platform such as a PC, then moved
with little or no changes to an embedded system.
. A good programmer can write a greater quantity of more robust, re-usable code

in Java than the same programmer using other language tools. Sure, a bad
programmer can write lousy code in any language, so you still have to use your
brain with Java. It's not a panacea.

Java programs can be better - a LOT better than C

In Java, memory management is automatic, and many classes of bugs (such as buffer
overruns) and stray pointers are impossible in Java. Java has excellent code
documentation and archiving tools built in (though it's up to the programmer to take
advantage of them). Java has extensive exception handling built into the language, and



you generally must go to some effort to circumvent it.

These factors make it possible for a competent Java programmer to write highly
readable, maintainable, and robust programs much more rapidly and easily than any
other general purpose programming language. Such benefits do not come
automatically - programmers must be familiar with these Java capabilities and know
how to properly apply them.

Isn't Java slow? (Not today)

Java compilers, interpreters, and runtime implementations have come a long way in the
last 5 years. The execution of well-written Java code can now be on a par with well-
written C code. Most Java code is executed by a JVM (Java Virtual Machine) which can
be an interpreter, a JIT (Just-In-Time) compiler, or an adaptive optimizing engine such
as HotSpot.

It's important to compare Java programs to similarly robust programs in C or assembly.
This is because C and assembly code have zero built-in safety features such as array
bounds checking, or automatic memory management. C and assembly programmers
are responsible for writing their own safety features or using proprietary third-party
libraries to achieve the same ends. Many C and assembly programmers ignore
exception handling (eventually to their own peril). Code which executes quickly but is
unreliable is no bargain. There are a whole class of well-known C and assembly bugs
which are difficult to find and fix. These bugs are virtually impossible in Java. By the
time you add equivalent safety and robustness code to C and assembly programs, you
will find that most or all of the claimed C and assembly performance advantage has
evaporated.

Anyone in charge of a schedule and budget will agree that software development time,
reliability and maintainability are the main factors driving the true lifecycle cost of
software. Typically 60% of a product's lifecycle cost is the cost of maintenance and
upgrades. In an embedded system, this total cost far outweighs the cost of hardware or
even the cost of initial development.

It's possible to write slowly-executing programs in any language, of course, and
perhaps easier in Java since memory management is handled automatically. Careless
object creation and destruction in Java can be transparent to the programmer, but can
have a huge effect on performance. It's important for Java programmers to be trained in
efficient use of objects. Actually, the same holds true for any object-oriented language.

Native-execution Java is blazing fast

Native- or direct- execution Java chips are built with Java as their native instruction set,
so they execute Java as quickly as other controllers execute equivalent instructions in C
or assembly code. There's nothing magical about creating a processor which executes
Java byte codes natively.

Our native execution Java systems offer deterministic real-time performance with very



low power consumption. In fact, JStamp uses less power than many PIC-class control
modules, yet has many times the memory and far greater computational performance.

JStik can execute approximately 20 million Java byte codes per second and can switch
thread contexts in less than one microsecond. The JStik HSIO (High Speed Input
Output) expansion bus can burst data at up to 50 megabytes per second. JStamp can
execute 3 million Java byte codes per second or throttle down and run on a 9-volt
transistor radio battery for over 40 hours.

Isn't Java hard to learn?

Java syntax is based on C so if you are familiar with C you have a big head start on
learning Java. Understanding objects and applying them appropriately is not trivial.
Neither is learning the common Java packages and idiosyncrasies. All of this will
probably take a year or more to master, assuming you use Java daily and study some
of the many excellent Java reference texts.

Is there a Dark Side to Java? If so, what is it?

Java is not a panacea for all programming problems. Sloppy programmers can
circumvent many of Java's safety features and write bad code in Java. The programmer
is still the most important link in the software development chain (and it's unlikely that
any computer language or development tool will ever completely replace the human
brain).

Java is a high-level language whereas C is a high level language with low-level
constructs such as direct memory access and manual memory allocation. Other
aspects of Java are more highly abstracted than C or C++. This abstraction can get in
your way when you are writing interfaces to actual hardware. For example, if you are
writing code (using javax.comm) to interface to an RF Modem, you need to know when
transmitted data is actually leaving the serial port hardware so that you can switch the
modem from transmit to receive mode. The abstraction of Java makes such tasks
difficult.

...to be continued at http://www.PracticalEmbeddedJava.com/



