
Embedded Java Book Tuesday, December 31, 2002 Page: 1

1. Notes about this book
1. Possible titles

1. Practical embedded Java
Note: A pragmatic approach to using native execution Java in real-world systems

2. This is not a market survey
Note: This is not a survey of all JVMs or embedded Java systems, it's an in-depth hands-on look at aJile native
execution Java systems. But there will be some mention of the new TINI400 and maybe also uJVM.

3. CDROM contents
Note: JEdit, ANT,

With setups and examples for TINI/TStik, JStamp,JStik and SaJe
2. What's so great about Java?

Note: Why is embedded Java the biggest news since the appearance of C 25 years ago?

Benefits of using Java: 1)APIs such as TCP/IP, serial I/O and graphics are included in the language or in standard
extensions to it 2) Java code can be more reliable (no memory leaks) 3) all team members can use same tools and
APIs on embedded, PC/gateway, and server side 4) at least 2X faster dev than C/assy 5) reduced product lifecycle
costs, 70% of which is maintenance and upgrades
1. Learn once, write anywhere

Note: Learn java once, write code for embedded, PC/clients, servers, anywhere Java is deployed.
2. Robust applications
3. Develop in half the time (or less) of C/C++
4. Standard APIs: serial I/O, network, graphics, etc
5. RTSJ standards for realtime control

Note: Imagine - a standardized way to support realtime on multiple hardware! This is something never close to
realized with vendor specific C libraries

6. Huge Java Community Process for extensions
7. High quality multi-platform development tools
8. Robust threading model built in
9. Exception handling mechanisms built in
10. Memory management built in
11. Packages make code distrib and support easier
12. Code documentation tools built in
13. Wealth of open source code available
14. Multi-platform, multi-vendor support
15. Everything (well almost) is an object

Note: The natural world can often easily be viewed through an OO paradigm. Subsumption architecture for
example - it's how most natural organisms function. Layers of behaviors. If you are hungry look for food, unless a
predator is attacking, then all that matters is survival.

16. True team collaboration
Note: all members of a project team using Java can share common tools, APIs, and can share code and
collaborate, from the embedded device, to the PC, to enterprise servers. Try that with the usual motley assortment
of C/assy (embeddedd), Visual BASIC or different C (PC/Client), and Java/database on the server.

17. Summary of "why Java?"
Note: So to summarize - Java is not perfect, but I'd rather write embedded code in Java than C or assembly any
day. All the basic Java syntax is C, anyway, so C coders will feel at home. Get comfortable with objects and you're
halfway there.

"Java is C++ done right, without pointers"
3. OK, there must be a dark side to Java

Embedded Java Book Tuesday, December 31, 2002 Page: 2

1. details of I/O drivers often hidden from you
Note: System programmers often need to really understand what's going on in the bowels of their systems. Java
tends to hide exactly this sort of understanding from you.

2. can't count cycles to predict loop timing
Note: but this only works on simple non-pipelined small micros anyway

3. garbage collection can interrupt your app
Note: But there are ways to deal with this, especially with RTSJ. But you do need to think about it.

4. You need to think in terms of objects
Note: This can be difficult for the non-OOP programmer (me for example). But if I can do it, you probably can too.

5. Some Java protection comes with a price
Note: array bounds checking for example, does slow down array access.

6. Firmware JVMs are typically big and slow...
Note: ...but that's why we are using native execution hardware, so many of those speed concerns evaporate.

4. Where Java doesn't fit
1. Really small devices

Note: Really small devices such as rice cookers running on 4-bit micros. You think I exaggerate, but a MicroChip
sales person told me that some years ago (1995?) the largest customer of MicroChip was - you guessed it - a rice
cooker manufacturer. Millions per year.

Although there is the Javelin Stamp and the possible new uVM
2. DSP systems

Note: DSP uses peculiar architectures and so far, there is not a good way to map Java onto any of the common
DSP chips.

3. Stable legacy apps
Note: there is no practical benefit to re-coding stable legacy apps in Java just to say they are now Java apps,
especially if these apps do not need major upgrades in the future. A lot of embedded devices are installed and
never/seldom changed. If it ain't broken, don't fix it.

5. Embedded Java software & extensions
Note: Java editions and configurations: Java Card, J2ME, CLDC and CDC, MIDP, RTSJ

Give a quick overview, focussing on the perspective of embedded developers. References to learn more elsewhere.
1. JDK1.4.1

Note: What's special about it (when used with embedded systems) compared to 1.3.X, such as much better
javadocs, regular expressions package, etc

2. J2ME
3. CLDC 1.0 and 1.1
4. CDC
5. MIDP
6. Javaxcomm
7. RTSJ
8. XML and SOAP

Note: small versions usable even on JStamp
9. JXTA

6. Applying objects in embedded systems
1. Typical multi-tiered projects

1. embedded end - small systems
2. PC or local clients
3. Server side or company wide hosts

2. Partitioning your project
3. When and what to encapsulate
4. Sharing code across a team

Embedded Java Book Tuesday, December 31, 2002 Page: 3

5. UML applied to an embedded project
7. Fundamental concepts in embedded Java

1. Use packages to your advantage
2. class.forName and system properties
3. Event handlers

Note: Much like interrupt handlers in C or assy
4. Memory allocation & initialization
5. Threading
6. Initializers and finalizers
7. Exception trapping and handling
8. Flash file system
9. coding with sockets and streams

1. avoid these common pitfalls
1. using new() in a loop
2. polling instead of interrupts
3. use a buffer then process the data
4. keep interrupt handlers small and simple
5. use javaxcomm whenever possible

10. Keeping code as portable as possible
8. Java Controllers

Note: Emphasize the smaller controllers, under $500. PC104 or larger systems running firmware JVMs on top of large
OSes are not particularly interesting, at least to me.
1. Java byte codes and class files
2. Firmware JVM Embedded Modules

Note: Just a brief overview of what interps are. Not in depth (this would be a book in itself, and doesn't interest me).
1. Javelin Stamp (? - it's not really Java)
2. TINI 80C400 and TStik

3. Some other firmware JVMs
Note: JVMs for other platforms (not embedded modules) such as the PalmOS PDAs, PocketPC such as iPaq with
Savaje.

Typically these JVMs are not designed for only one chip or device but support a family of similar target hardware
4. Native Execution Java

1. aJile aJ80 and aJ100
2. Systronix JStamp
3. Systronix JStik

1. HSIO Bus
2. JSimm interface

4. Rolling your own aJile native execution hardware
5. Other possible Java controllers

Note: Patriot Scientific (had an empty booth JavaOne2002)
DCT (may have a chip in 2003)
ImSys CJip (not native execution)

9. Real Time Java
1. RTSJ spec overview, references
2. garbage collectors
3. writing realtime code without garbage collection, even without RTSJ support

10. Project architecture & tools
1. JBuilder setup

1. CLDC runtimes

Embedded Java Book Tuesday, December 31, 2002 Page: 4

2. javaxcomm
3. other libraries

2. JemBuilder and Charade
3. JSwat source debugger
4. Arranging Java project folders

1. source, class and doc folders
2. separate flash and ram build output folders

5. JEdit and ANT
11. Debugging embedded Java projects

1. Debugging classes on other hardware
1. command line regex debugging of classes

Note: Debug classes on a PC, using JDK1.4 regular expressions and introspection ala JDJ article
2. debugging class example - image processing CheckerBot

2. Debugging on the embedded hardware
1. printed output
2. I/O bits
3. JTAG debugging interfaces
4. byte code debugging
5. source level debugging

12. Interfacing to external hardware
1. Memory mapped I/O
2. SPI

1. Systronix SPI address expansion
2. XML tagging memory
3. Master and slave

3. I2C
4. CAN

13. JCX - Java computer for Legos
1. Lego 2-wire sensor interface
2. Lego motors

14. Embedded Java networks
Note: Only cover embedded networks with specific Java support
1. ethernet

1. 10 MBit to 100 MBit
2. UDP, HTTP, TCP/IP
3. sockets and streams

2. CAN
1. 128 Kbit to 1 MBit
2. CAN Kingdom

3. Dallas 1Wire
1. 14 KBit to 140 KBit (approx)
2. available devices
3. tunneling other I/O devices over 1Wire

4. wireless
Note: power considerations esp with 802.11 and Bluetooth
1. ethernet 802.11a and b
2. Bluetooth
3. RF modems 900 and 400 MHz
4. JXTA protocols

Embedded Java Book Tuesday, December 31, 2002 Page: 5

5. XML and SOAP
15. SPI masters and slaves
16. Device drivers in Java
17. Event Handlers and Interrupts
18. Http servers and Servlets
19. Threading and interrupts in a real project

1. Typical Interrupt sources
2. Cooperative multithreading
3. Periodic Threads (preemptive scheduling)

20. LCD/touchscreen GUI
21. A multi-CPU embedded system

1. Java version of Occam
22. Examples and App notes

Note: These could all be at the end or mixed in with the body of the book as appropriate
1. easy serial I/O using the javaxcomm event models
2. Building a 50 nsec resolution pulse generator - in Java!

Note: This project uses a JStamp development kit, and an LCD/touchscreen module to build a piece of useful test
equipment - a programmable digital pulse generator with 50 nsec resolution!

3. Periodic threads - a simple scheduler
Note: Write a simple wrapper to make sched threads and piano roll look like some of the RTSJ schedulers

4. Sonar rangefinder
5. R/C Servo control

Note: Driving multiple radio control servos from a Java chip. These servos are widely used in robotics as well as in
scale models.

Drive 8 servos with my bizarro idea, using one timer. Max servo pulse is 2 msec, and you need to service them all
every 20 msec, so 8 x 2 = 16 msec, leaving 4 msec of space within the 20 msec allowed.

Use 2 timers, each in its own thread, each driving 8 servos.
6. CMUcam vision sensor

Note: examples would be the hockeybot and checkerbot
7. Speech recognition and synthesis
8. Controlling a 4WD R/C model chassis with realtime Java

Note: Build a powerful 4WD all-terrain autonomous robot starting with a rugged chassis which is available for under
$50.

9. Fantazein oscillating wand sign
Note: Driving an oscillating-wand clock from a stock JStamp development station. The messages on the oscillating
LED wand appear to float in space and are a popular feature in our trade show booth. This project is done and the
code and info can be downloaded from jstamp.com It's a good example of realtime Java since the wand must be
written to every 500 usec without fail or jitter.

10. Oscillating wand stockticker/clock/weatherstation
Note: a JStik project which maintains the wand display and also retrieves realtime stock quotes, and atomic clock
time from the internet, along with weather conditions from a Dallas OneWire weather station. The prototoype of
this app note is complete and is being shown in our booth in 2002 starting with JavaOne

11. An inexpensive realtime Java robot platform
12. A simple peer-to-peer ad-hoc RF network with JXTA

Note: JXTA is an open-source network protocol which is media agnostic. It can work with wired IP, wireless IP,
Bluetooth, or other protocols. www.jxta.org

13. LCD and touchscreen GUIs

Embedded Java Book Tuesday, December 31, 2002 Page: 6

14. The JavaOne 2002 realtime Java sumo robots
Note: JavaOne 2002 featured two sumo robots - one using R/C control and driven by a human, the other
controlled by realtime Java running on a JStamp. Here's a look at the design and programming of the robots.

15. University of Utah HockeyBots
16. University of Utah CheckerBot

