A51
8051 Cross-Assembler

Version 0.49 or later

Copyright (c) 1985-1991 William C. Colley, lli
Copyright (c) 1990-96 Systronix, Inc.

Licensed to Systronix, Inc. by the author

LIMITED WARRANTY

The information in this manual is subject to change without notice and does not represent a commitment
on the part of Systronix, Inc. Systronix, Inc. makes no warranty, express or implied, for the use or misuse
of its products, which are provided with the understanding that you, the user, will determine fitness for a
particular application. Systronix assumes no responsibility for any errors which may appear in this
manual. No part of this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose other than the
purchaser's personal use without the written permission of Systronix, Inc.

Systronix reserves the right to revise this documentation and the software and hardware described herein
or make any changes to the specifications of the product described herein at any time without obligation
to notify any person of such revision or change.

TRADEMARKS

Systronix is aregistered trademark of Systronix Inc, INTL and Intel are registered trademarks of Intel
Corporation, Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Systronix®, Inc.

555 South 300 East #21
Salt Lake City, UT 84111
TEL: 801-534-1017
FAX: 801-534-1019
Internet: www.systronix.com
email: info@systronix.com
support: support@systronix.com

Copyright © 1993-1996 by Systronix®, Inc.
All rights reserved.

Revised - October 31, 1996

Revision History
1996 Oct 30 Improved description of DW directive

A51
Release 0.49 or later

Table of Contents

.. 1
HODriver FIles. ..o 1
Systronix Web Site & Forum 1
Getting Technical SUPPOIt o e 1
INSTALL BCISL ... e e 2
DPB2 Example Program Files 2
PROCESSOR INSTALLATION ... e e 2
JP3 225072252 JUMPEX . . . o oottt e e e e 2
DALLAS SERIAL LOADERS: IMPORTANT NOTES! 3
What arethe Dallas Serial Loaders? 3
Loader Script File Tips& Example 4
KITOK VS K2 5
Dallas.CRFG RIESo 5
PROGRAM VSLOAD ... e 6
QUICK START e 6
FileExtensons.SRL and .INC 6
First Program 6
DPB2 /O MAP 9
Available Processor /O PINS 9
AddressDemultiplexer e 9
EXTERNAL MEMORY OR PERIPHERALDEVICES 9
Recommended Peripheral Addressing 10
Protecting Processor Pins from Static or Under-voltage 10
POWER SUPPLY .. e 10
LCD DISPLAY S . 11
LCD Connector PINOULo o e 12
LED Backlights 12
20x4 LCD withLED Backlight 13
16x2 LCD with LED Backlight i 13
LCD DIiVEIS ot 13
LCD ENCIOSUIESot e 13
KEYPAD USE ... 13
KEYPAD LEGENDS e 16
DIGITAL INPUTS . . e s 17
External Input Jumper BlocksJP18and JP19 17
RELAY DRIVER OUTPUTS . . .o 18
BUZZER . .. 18
ANALOGtoDIGITAL CONVERTER 19
ADC Throughput 19
JPISI/O CONNECTOR . . .ottt e e e e e e 20
APPLICATION EXAMPLES e 21

DPB2I/ODRIVERS 21

LOADING PROGRAMS . . e e 21

DEBUGGING DPB2 SOFTWARE and HARDWARE 23
Internet FAQ e 23

Start SImple .. 23
ExceptionHandling 23

Quick DiagnosisTable 23
SCHEMATICS and MECHANICAL DRAWINGS 25
SChEMALICS 27
Enclosure Drawingot 37

ABL ASSEMblEr . . 39
USING THE A51 CROSS-ASSEMBLER s 1
INPUT FILE FORM AT ..o e 2
LabElS . 3
NUMENC CONSLANES ottt e 4

Sting CoNStantsot 4
EXPrESSIONS . .o 4

Bit EXPressionso 5

8051 OPCODESo 6
NO AIQUMENES . .. 6

ONe ArgUMENTo e 6

Two Argumentsin Order 7

Two Argumentsin Either Order i 7

Three Argumentsin Order e 7
Relative Branches. 7
Absolute BranChes 8
LongBranches 8

MOV 8
PSEUDO OPCODES e 9
BT 9

DB . 9

DS 9

DV 9

END . 10

EQU . 10
IF,ELSE, ENDIF 10

INCL 11

ORG . 11

PAGE . . 12

REG . . 12

SET 12

T T o 12
ASSEMBLY ERRORSand WARNINGS e 13
ASSEMBLY ERRORS 13
* --|llegal or Missing Statement 13

(-- Parenthesisimbalance. i i 13
"--Missing Quotation Mark e 13
B--BranchTargetOutof Bounds 14

D--lllegal Digit. ... e e e e 14

E--lllegal EXPressiont 14

| --IF-ENDIF Imbalance 14
L--Illega Label 14
M -- Multiply Defined Label 14
O--lllega Opcodeo e 15
P--Phasing Error 15
S--lllega Syntax ... 15
T--TooMany Argumentst 15
U--UndefinedLabdl 15
V--lllegal Value 16
WARNING MESSAGES e 16
Illegal Optionignored i 16
-l OptionIgnored -- NoFileName 16
-oOptionIgnored -- NoFileName 16
ExtraSourceFilelgnored 16
ExtraListing Filelgnored 16
ExtraObject Filelgnored 16
FATAL ERRORMESSAGES s 17
No Source File Specified 17
SourceFileDIANOt Open 17
Lising FileDidNot Open i 17
Object File DIdNOt Openo e e 17
Error Reading SourceFile 17
Disk or Directory Full 17
FileStack Overflow 17
If Stack Overflow 17

TooMany Symbols 18

A51 - 8051 Cross Assembler User's Manual

USING THE A51 CROSS-ASSEMBLER

This documentation assumes knowledge of assembly language programming and the 8051 instruction

set. Itisnot atutorial, and is not intended to teach 8051 assembly language programming. Its purpose is
to enable you to use the A51 assembler by itself, to explain A51 syntax and formats, and to elaborate on
A51 error, warning, and fatal error messages.

First, the question, "What does a cross-assembler do?' needs to be addressed as there is considerable
confusion on this point. A cross-assembler isjust like any other assembler except that it runs on some
CPU other than the one for which it assembles code. For example, A51 assembles 8051 source code into
8051 object code, but it runs on an MS-DOS PC using the 8086 family CPU. The reason that
cross-assemblers are useful is that you probably already have a CPU with memory, disk drives, atext
editor, an operating system, and all sorts of hard-to-build or expensive facilities on hand. A
cross-assembler alows you to use these facilities to develop code for another target CPU.

This program requires one input file (your 8051 source code) and zero to two output files (the listing and
the object). The input file MUST be specified, or the assembler will terminate with afatal error. The
listing and object filesare optional. If no listing file is specified, no listing is generated, and if no object
fileis specified, no object is generated. If the object fileis specified, the object is written to thisfilein
"Intel hexadecimal" format.
The command line for the cross-assembler looks like this:

Ab51 source file[-l list_file} [-o object_file]

where the [] indicates that the specified item is optional.

Example:

abl test51.asm sour ce: test51. asm
listing: none
obj ect : none

abl test5l.asm-| test51.prn sour ce: test51. asm
listing: test5l.prn
obj ect : none

a5l test51.asm-o0 test51. hex sour ce: test51. asm
listing: none
obj ect : test51. hex

abl test5l.asm-| test5l.prn -o test51. hex
sour ce: test51. asm
listing: test5l.prn
obj ect : test51. hex

The order in which the source, listing, and object files are specified does not matter. Note that no default
file name extensions are supplied by the assembler.

A51 - 8051 Cross Assembler User's Manual

HMINPUT FILE FORMAT

The source file that the cross-assembler processes into alisting and an object is an ASCII text file that
you can prepare with whatever editor you have at hand. The most-significant (parity) bit of each
character is cleared as the character is read from disk by the cross-assembler, so editors that set this bit
should not bother this program. All printing characters, the ASCIl TAB character (09H), and carriage-
return linefeed combinations are processed by the assembler. All other characters are passed through to
the listing file, but are otherwise ignored.

The source fileis divided into lines by carriage-return linefeed characters. The internal buffers of the
cross-assembler will accommodate lines of up to 255 characters.

Each source line is made up of three fields: the label field, the opcode field, and the argument field. The
label field is optional, but if it is present, it must begin in column 1. The opcode field is optional, but if
itispresent, it must not begin in column 1. If both alabel and an opcode are present, one or more spaces
and/or TAB characters must separate the two. If the opcode requires arguments, they are placed in the
argument field which is separated from the opcode field by one or more spaces and/or TAB characters.
Finally, an optional comment can be added to the end of the line. This comment must begin with a
semicolon which signals the assembler to pass the rest of the line to the listing and otherwise ignore it.
Thus, the source line looks like this;

[label][opcode] arguments]][;commentary]

where the [] indicates that the specified item is optional .

Examples:
colum 1
|
v
GRONK DINZ R1, LOOP ; This line has everything.
I NC R1 ; This line has no | abel.
BEEP ; This line has no opcode.

; This line has no | abel and no opcode.

; The previous line has nothing at all.
END ; This line has no argunent.

A51 - 8051 Cross Assembler User's Manual

Labels

A label isany sequence of aphabetic or numeric characters starting with an aphabetic. The legal
alphabetics are:

1$%& :?2[\]"_ “{|} ~ AZ az

The numeric characters are the digits 0-9. Note that "A" is not the same as"a' in alabel. Thiscan
explain mysterious U (undefined label) errors occurring when alabel appears to be defined.

A label is permitted on any line except a line where the opcode is IF, ELSE, or ENDIF. Thelabel is
assigned the value of the assembly program counter before any of the rest of the line is processed except
when the opcode is BIT, EQU, ORG, REG, or SET.

Labels can have the same name as opcodes, but they cannot have the same name as pre-defined bit
variables, operators, registers, or pre-defined byte addresses. The reserved names are:

Pre-defined bit variables:

AC CY EA ES ETO ET1
EXO0 EX1 FO I EO I E1 I TO
1Tl ov P PS PTO PT1
PX0 PX1 RSO RS1 RB8 REN
RI SMD SML Swe TB8 TFO
TF1 TI TRO TR1

Operators:
AND EQ CE Gr H GH LE
LOW LT MOD NE NOT R
SHL SHR XOR

Registers:
A AB C DPTR PC RO
R1 R2 R3 R4 R5 R6
R7

Pre-defined byte addresses:

$ ACC B DPH DPL IE

I P PO Pl P2 P3 PCON
PSW SBUF SCON SP TCON THO
THL TLO TL1 TMOD

If alabel isused in an expression before it is assigned avalue, the label is said to be
"forward-referenced.” For example:

L1 EQU L2 + 1 L2 is forward-referenced here.
L2
L3 EQU L2 + 1 ; L2 is not forward-referenced here.

Numeric Constants

Numeric constants are formed according to the Intel convention. A numeric constant starts with a
numeric character (0-9), continues with zero or more digits (0-9, A-F), and ends with an optional base
designator. The base designators are H for hexadecimal, none or D for decimal, O or Q for octal, and B
for binary. The hex digits a-f are converted to upper case by the assembler. Note that a numeric constant

A51 - 8051 Cross Assembler User's Manual

cannot begin with A-F asit would be indistinguishable from alabel. Thus, all of the following evaluate
to 255 (decimal):

offH 255 255D 3770 377Q 11111111B

String Constants

A string constant is zero or more characters enclosed in either single quotes (' *) or double quotes (").
Single quotes only match single quotes, and double quotes only match double quotes, so if you want to
put asingle quotein astring, you can do it like this: "™. In al contexts except the DB statement, the
first character or two of the string constant are all that are used. Therest isignored. Noting that the
ASCII codesfor "A" and "B" are 41H and 42H, respectively, will explain the following examples:

" and "' eval uate to 000OH
"A" and ' A eval uate to 0041H
" AB" eval uates to 4142H

Note that the null string " is legal and evaluates to 0000H.

Expressions

An expression is made up of labels, numeric constants, and string constants glued together with
arithmetic operators, logical operators, and parentheses in the usual way that algebraic expressions are
made. Operators have the following fairly natural order of precedence:

Highest anything in parentheses
unary +, unary -
*,/,MOD, SHL, SHR
binary +, binary -
LT, LE, EQ, GE, GT, NE
NOT
AND
OR, XOR

Lowest HIGH, LOW

A few notes about the various operators are in order:

1) The remainder operator MOD yields the remainder of the division of the left operand by the right
operand.

2) The shifting operators SHL and SHR shift the left operand to the left or right the number of bits
specified by the right operand.

3) Therelational operatorsLT, LE, EQ, GE, GT, and NE can also be written as <, <= or =<, =, >=
or =>, and <> or ><, respectively. They evaluate to OFFFFH if the statement istrue, O otherwise.

4) The logical operators NOT, AND, OR, and XOR perform bitwise operations on their operand(s).
5) HIGH and LOW extract the high or low byte, of an expression.

6) The specia symbol $ can be used in place of alabel or constant to represent the value of the program
counter before any of the current line has been processed.

A51 - 8051 Cross Assembler User's Manual

Some examples are in order at this point:

2+3* 4 eval uat es
(2 +3) * 4 eval uat es
NOT 11110000B XOR 00001010B eval uat es
H GH 1234H SHL 1 eval uat es
001Q EQ O eval uat es
001Q =2 SHR 1 eval uat es

to 14

to 20

to 00000101B
to 0024H

to 0

to FFFFH

All arithmetic is unsigned with overflow from the 16-bit word ignored. Thus:

32768 * 2 eval uat es

Bit Expressions

to 0

Byte addresses are specified by expressions as described above. Bit addresses are specified by a special
type of expression which can take the following three forms:

bit_variable

Bit variables are declared with the BIT pseudo-op. A number of bit variables are pre-defined by
the assembler such as OV for the overflow flag (bit 2 of location OEQH).

expression_1. expression_2

Thisyields the bit address of bit expression_2 of location expression_1. expression_1 must in
the range 20H - 2FH or an even multiple of 8 in the range 80H - OFFH. expression_2 must bein
therange0- 7. Anillegal valuein either expression will causeaVv (value) error.

expression

An expression can also specify abit address by itself.

A51 - 8051 Cross Assembler User's Manual

M38051 OPCODES

The opcodes of the 8051 processor are divided into groups below by the type of arguments required in
the argument field of the source line. If an opcode requires multiple arguments, these must be placed in
the argument field in order (unless otherwise specified) and separated by commas. Some shorthand
notations will be used. They are:

#imm immediate value (e.g. #012H) in the range -128 to +255
bit bit expression
dir byte address in the range O - OFFH

rel byte address
Rn RO, R1, R2, R3, R4, R5, R6, or R7

No Arguments

The following opcodes allow no arguments at al in their argument fields:

NOP RET RETI

One Argument

The following opcodes require one argument. The allowable argument values for each opcode are listed
below:

OPCODE(S) ARGUMENT VALUE(S)
DA, RL, RLC, RR, RRC, SWAP A
DIV, MUL AB
POP, PUSH dir
DEC A, Rn, @R0O, @R1, or dir
INC A, DPTR, Rn, @R0O, @R1, or dir
SETB C, or bit
CLR, CPL A, C, or bit
JMP @A + DPTR

A51 - 8051 Cross Assembler User's Manual

Two Arguments in Order

The following opcodes require two arguments in the specified order:

OPCODE FIRST SECOND ARGUMENT
ARGUMENT
MOVC A @A + DPTR or @A +
PC
XCHD A @RO or @R1
XCH A dir, Rn, @RO, or @R1
ADD, ADDC, ANL, ORL, SUBB, A dir, #imm, Rn, @RO,
XRL @R1
ANL, ORL, XRL dir A, or #imm
ANL, ORL C bit, or /bit
JB, JBC, JNB bit rel
DJINZ Rn, or @RN rel

Two Arguments in Either Order

The following opcodes require two argumentsin either order:

|| OPCODE FIRST ARGUMENT | SECOND ARGUMENT ||
|| MOVX A @DPTR, @RO, or @R1 ||

Three Arguments in Order

The CINE opcode requires three arguments in order. Two sets of arguments are allowed as follows:

OPCODE FIRST SECOND THIRD
ARGUMENT ARGUMENT ARGUMENT
A dir or Himm rel
CJINE)
Rn, @RO, or @R1 Himm rel

Relative Branches

The opcodes in this group require one argument. It is an arithmetic expression that evaluates to an
address in the range -128 to +127 bytes from the address of the first byte of the NEXT instruction. The
opcodes are:

A51 - 8051 Cross Assembler User's Manual

JC INC Nz XZ SIMP

Absolute Branches

These opcodes require one argument. It is an arithmetic expression that evaluates to an address on the
same 2K page as the NEXT instruction. The opcodes are:

ACALL AIMP

Long Branches
The following opcodes require one argument that is an arithmetic expression with any value.

LCALL LIMP

MOV

The MOV opcode requires two arguments. The following table has the allowable combinations marked
with an X:

'MOV' OPCODE ARGUMENT COMBINATIONS
FIRST SECOND ARGUMENT
ARE#ME A | #m | dr | Rn |[@RO| @R1| bit | C
m
A X X
dir X X X
Rn X X X
@RO X X X
@R1 X X X
bit X
C X
DPTR *

* = Theimmediate value in this case (only) is not restricted to the range -128 to +255.

A51 - 8051 Cross Assembler User's Manual

BMPSEUDO OPCODES

Unlike 8051 opcodes, pseudo opcodes (pseudo-ops) do not represent machine instructions. They are,
rather, directives to the assembler. These directives require various numbers and types of arguments.
They will be listed individually below.

BIT

The BIT pseudo-op allows the user to create bit variables. It takes the following form:
label BIT bit_expression

The label is mandatory. If it ismissing, the assembler will generate an L (I1abel) error.

DB

The DB pseudo-op allows arbitrary bytes to be spliced into the object code. Its argument is a chain of
zero or more expressions that evaluate to -128 through 255 separated by commas. If a comma occurs
with no preceding expression, a 00H byte is spliced into the object code. The sequence of bytes OFEH,
OFFH, 00H, 01H, 02H could be spliced into the code with the following statement:

DB -2,-1,,1,2

A special case exists here. If astring constant is entered with no arithmetic done on it, then the entire
string is spliced into the code stream. Thus, the sequence of bytes 002H, 043H, 041H, 054H, 044H
could be spliced into the code with the following statement:

DB 1+1,"CAT","C"+1

DS

The DS pseudo-op is used to reserve ablock of storage for program variables, or whatever. This storage
isnot initialized in any way, so its value at run time will usually be random. The argument expression
(which may contain no forward references) is added to the assembly program counter. The following
statement would reserve 10 bytes of storage called "STORAGE":

STORAGE DS 10

DW

The DW pseudo-op allows 16-bit words to be spliced into the object code. Its argument is a chain of
Zero or more expressions separated by commas. If a comma occurs with no preceding expression, aword
of O000H is spliced into the code. The word is placed into memory H:L (most significant byte of the
word at the low address, least significant byte of the word at the high address) -- the opposite of standard
Intel order. In other words, a DW 01234H places 12H at address “n” and 34H at address “n+1". The
sequence of bytes OFFH, OFEH, 00H, 00H, 01H, 02H could be spliced into the code with the following

A51 - 8051 Cross Assembler User's Manual

Statement:

DW OFFFEH, , 0102H

END

The END pseudo-op tells the assembler that the source program is over. Any further linesin the source
file areignored and not passed on to the listing. 1f an argument is added to the END statement, the value
of the argument will be placed in the execution address slot in the Intel hex object file. The execution
address defaults to the program counter value at the point where the END was encountered. Thus, to
specify that the program starts at label START, the END statement would be:

END START

If end-of-fileis encountered in the source file before an END statement is reached, the assembler will add
an END statement to the listing and flag it with a* (missing statement) error.

EQU

The EQU pseudo-op is used to assign a specific value to alabel, thus the label on thislineis
REQUIRED. Oncethevalueisassigned, it cannot be reassigned by writing the label in column 1, by
another EQU statement by a REG statement, or by a SET statement. Thus, for example, the following
statement assigns the value 2 to the label TWO:

TWO EQU 1+1

The expression in the argument field must contain no forward references.

IF, ELSE, ENDIF

These three pseudo-ops allow the assembler to choose whether or not to assemble certain blocks of code
based on the result of an expression. Code that is not assembled is passed through to the listing but
otherwise ignored by the assembler. The IF pseudo-op signals the beginning of a conditionally
assembled block. It requires one argument that may contain no forward references. If the value of the
argument is non-zero, the block is assembled. Otherwise, the block isignored. The ENDIF pseudo-op
signals the end of the conditionally assembled block. For example:

I F EXPRESS| ON ; This whol e thing generates
DB 01H, 02H, 03H ; no code whatsoever if
ENDI F ;. EXPRESSION is zero.

A51 - 8051 Cross Assembler User's Manual

The EL SE pseudo-op allows the assembly of either one of two blocks, but not both. The following two
sequences are equivalent:

IF EXPRESSI ON
... sonme stuff ...
ELSE
... sone nore stuff ...
ENDI F
TEMP_LAB SET EXPRESSI ON
IF TEMP_LAB NE O
... sonme stuff ...
ENDI F
IF TEMP_LAB EQ O
... sone nore stuff ...
ENDI F

The pseudo-ops in this group do NOT permit labels to exist on the same line as the status of the label
(ignored or not) would be ambiguous.

All IF statements (even those in ignored conditionally assembled blocks) must have corresponding
ENDIF statements and all ELSE and ENDIF statements must have a corresponding IF statement.

IF blocks can be nested up to 16 levels deep before the assembler terminates with a fatal error.

INCL

The INCL pseudo-op is used to splice the contents of another file into the current file at assembly time.
The name of the file to be INCLuded is specified as a normal string constant, so the following line would
splice the contents of file "const.def" into the source code stream:

I NCL "const. def"

INCLuded filesmay, in turn, INCLude other files until four files are open simultaneously.

ORG

The ORG pseudo-op is used to set the assembly program counter to a particular value. The expression
that defines this value may contain no forward references. The default initial value of the assembly
program counter is 0000H. The following statement would change the assembly program counter to
OFOO0O0H:

ORG OFO0OH

If alabel is present on the same line as an ORG statement, it is assigned the new value of the assembly
program counter.

A51 - 8051 Cross Assembler User's Manual

PAGE

The PAGE pseudo-op aways causes an immediate page gjection in the listing by inserting a form feed
(\f') character before the next line. If an argument is specified, the argument expression specifies the
number of lines per page in thelisting. Legal values for the expression are any number except 1 and 2.
A value of 0 turnsthe listing pagination off. Thus, the following statement cause a page g ection and
would divide the listing into 60-line pages:

PAGE 60

REG

The REG pseudo-op functions like the EQU pseudo-op except that the argument must be aregister -- i.e.
RO - R7 or ancther label defined with the REG pseudo-op. A label defined with REG can be used
anywhere that RO - R7 iscalled for. Thisincludesformslike @LABEL. Likethe EQU statement, the
argument expression must contain no forward references. A label defined with the REG statement cannot
be redefined by writing it in column 1, by an EQU statement, by another REG statement, or by a SET
statement. The following pair of statements will assemble to a"MOV @RO0, A" instruction:

TEMP REG RO
MoV @EWP, A

SET

The SET pseudo-op functions like the EQU pseudo-op except that the SET statement can reassign the
value of alabel that has already been assigned by another SET statement. Like the EQU statement, the
argument expression may contain no forward references. A label defined by a SET statement cannot be
redefined by writing it in column 1 or with an EQU statement. The following series of statements would
set the value of label "COUNT" to 1, 2, then 3:

COUNT SET 1
COUNT SET 2
COUNT SET 3

TITL

The TITL pseudo-op sets the running title for the listing. The argument field is required and must be a
string constant, though the null string (*") islegal. Thistitleis printed after every page gjection in the
listing, therefore, if page gections have not been forced by the PAGE pseudo-op, the title will never be
printed. The following statement would print the title "Random Bug Generator -- Ver 3.14159" at the
top of every page of the listing:

TITL "Random Bug Generator -- Ver 3.14159"

A51 - 8051 Cross Assembler User's Manual

ASSEMBLY ERRORS and WARNINGS

When a source line contains an illegal construct, the line is flagged in the listing with a single-letter code
describing the error. The meaning of each code is listed below. In addition, a count of the number of
lines with errorsis kept and printed on the PC screen after the END statement is processed. If more than
one error occursin agiven line, only the first isreported. For example, theillegal label "=$#*'(" would
generate the following listing line:

L 0000 FF 00 00 =$#*" (LDA RO

The line which caused the error is also output to the PC screen.

BASSEMBLY ERRORS

* -- lllegal or Missing Statement

This error occurs when either:

1) the assembler reaches the end of the source file without seeing an END statement, or
2) an END statement is encountered in an INCLude file.

If you are "sure" that the END statement is present when the assembler thinks that it is missing, it
probably isin the ignored section of an IF block. If the END statement is missing, supply it. If the END
statement isin an INCLude file, delete it.

(-- Parenthesis Imbalance

For every left parenthesis, there must be aright parenthesis. Count them.

" -- Missing Quotation Mark

Strings have to begin and end with either " or '. Remember that " only matches" while' only matches .

A51 - 8051 Cross Assembler User's Manual

B -- Branch Target Out of Bounds

The 8051 relative branch instructions will only reach addresses that are within -128 and +127 bytes of the
first byte of the next instruction. The 8051 absolute branch instructions will only reach addresses on the
same 2K page as the next instruction. If this error occurs, the source code will have to be rearranged to

bring the branch target within range or along branch instruction that will reach anywhere will have to be
used.

D -- lllegal Digit

This error occursif adigit greater than or equal to the base of a numeric constant is found. For example,
a2 in abinary number would cause an illegal digit error. Especialy, watch for 8 or 9 in an octal number.

E -- lllegal Expression

This error occurs because of :

1) amissing expression where oneisrequired

2) aunary operator used as a binary operator or vice-versa
3) amissing binary operator

4) aSHL or SHR count that is not O thru 15

| -- IF-ENDIF Imbalance
For every IF there must be a corresponding ENDIF. If this error occurs on an ELSE or ENDIF

statement, the corresponding IF is missing. If this error occurs on an END statement, one or more
ENDIF statements are missing.

L -- lllegal Label

This error occurs because of :

1) anon-aphabetic in column 1
2) areserved word used as alabel

3) amissing label on aBIT, EQU, REG, or SET statement

4) alabel onan IF, ELSE, or ENDIF statement

M -- Multiply Defined Label

This error occurs because of:

A51 - 8051 Cross Assembler User's Manual

1) alabel defined in column 1 or with the EQU statement being redefined
2) alabel defined by a SET statement being redefined either in column 1 or with the EQU statement

3) thevalue of the label changing between assembly passes

O -- lllegal Opcode

The opcode field of a source line may contain only avalid machine opcode, avalid pseudo-op, or nothing
a al. Anything else causesthis error.

P -- Phasing Error

This error occurs because of :

1) aforward referencein aBLK, CPU, EQU, ORG, or SET statement

2) alabel disappearing between assembly passes

S -- lllegal Syntax

This error means that an argument field is scrambled. Sort the mess out and reassemble. In particular,
look for use of registers that don't apply to a particular opcode, missing commas, and the like.

T -- Too Many Arguments

This error occurs if there are more items (expressions, register designators, etc.) in the argument field
than the opcode or pseudo-op requires. The assembler ignores the extraitems but issues this error in case
something is really mangled.

U -- Undefined Label

This error occursif alabel isreferenced in an expression but not defined anywhere in the source program.
If you are "sure" you have defined the label, note that upper and lower case letters in labels are different.
Defining "LABEL" does not define "Label."

V -- lllegal Value

This error occurs because:

1) animmediate valueisnot -128 thru 255, or

2) adirect addressis not 0 thru 255, or

3) abit expression contains an illegal address or bit number, or

A51 - 8051 Cross Assembler User's Manual

4) aDB argument is not -128 thru 255, or

5) an INCL argument refers to afile that does not exist.

BWARNING MESSAGES

Some errors that occur during the parsing of the cross-assembler command line are non-fatal. The
cross-assembler flags these with a message on the PC screen, beginning with the word "Warning." The
messages are listed below:

lllegal Option Ignored

The only options that the cross-assembler knows are -| and -o. Any other command line argument

beginning with - will cause this error.

-l Option Ignored -- No File Name
-0 Option Ignored -- No File Name

The -l and -0 options require a file name to tell the assembler where to put the listing file or object file. If
this file name is missing, the option is ignored.

Extra Source File Ignored

The cross-assembler will only assemble one file at atime, so source file names after the first are ignored.

To assemble a second file, invoke the assembler again.

Extra Listing File Ignored
Extra Object File Ignored

The cross-assembler will only generate one listing and object file per assembly run, so -I and -o options
after the first are ignored.

BFATAL ERROR MESSAGES

Several errorsthat are detected during the parsing of the cross-assembler command line or during the
assembly run are fatal. The cross-assembler flags these with a message on the PC screen beginning with
the words "Fatal Error." The messages are explained below:

No Source File Specified

This oneis self-explanatory. The assembler does not know what to assemble.

A51 - 8051 Cross Assembler User's Manual

Source File Did Not Open

The assembler could not open the source file. The most likely cause is that the source file as specified on
the command line does not exist. Rarely, aread error in the disk directory could cause this error.

Listing File Did Not Open
Object File Did Not Open

This error indicates either a defective listing or object file name or afull disk directory. Correct thefile
name or make more room on the disk.

Error Reading Source File

This error generally indicates aread error in the disk data space. Use your backup copy of the source file
(You do have one, don't you?) to recreate the mangled file and reassemble.

Disk or Directory Full

This oneis self-explanatory. Some more space must be found either by deleting files or by using a disk
with more room on it.

File Stack Overflow

This error occursif you exceed the INCLude file limit of four files open simultaneously.

If Stack Overflow

This error occurs if you exceed the nesting limit of 16 IF blocks.

Too Many Symbols

Y ou have run out of memory. The space for the cross-assembler's symbol tableis allocated at run-time,
s0 the cross-assembler will use al available memory up to alimit of 64K. Please call or e-mail us
(support@systronix.com) if you are having this error, we may be able to help.

	USING THE A51 CROSS-ASSEMBLER
	INPUT FILE FORMAT
	Labels
	Numeric Constants
	String Constants
	Expressions
	Bit Expressions

	8051 OPCODES
	PSEUDO OPCODES
	ASSEMBLY ERRORS
	WARNING MESSAGES
	FATAL ERROR MESSAGES

