
The Systronix commitment: We pledge to provide you with embedded programming
tools offering exceptional ease of use, outstanding performance, and unmatched value.

8051 Family
BASIC Compiler

BCI51

If the idea of powerful and painless 8051-family code development sounds attractive,
consider the new 8051 BASIC cross-compiler from Systronix. BCI51 is the first BASIC
cross-compiler to offer ease of use, a short learning curve, and the power and flexibility to
grow with your requirements. BCI51 and BCI51 Pro are true real-time compilers, NOT
modified interpreters. This means you get true real-time interrupts and a re-entrant
function library. The photo shows our DPB2 Universal Dallas Development System -
one board supports the whole DIP and SIMM Dallas Secure Microcontroller Line!

8051 Family Memory

Data Memory Program Memory

64K
Bytes

External

"Great software. Great package, great support. Keep up the good work!"
Derek Howard, Tech Electronics

Easy 8051 programming!
With BCI51, creating professional quality 8051 programs has never
been easier! Your code will be fully compatible with a wide range of
8-bit microcontrollers including CMOS or NMOS 8031, 8032, 8051,
and 8052 devices. BASIC saves you time in development and
documentation.

How does BCI51 combine ease of use with sophistication? The
BCI51 compiler contains an Artificial Intelligence engine which
analyzes your program and configuration directives. The AI engine
automatically allocates and manages the hardware resources of
your target microcontroller, and generates optimal startup and
interrupt handling code. You can specify as few or as many
configuration options as you wish. The AI engine does the rest for
you, and writes all configuration options to a file for your analysis.

BCI51 has the power and flexibility to grow with your requirements.
In-line assembly code, sophisticated error handling, and a variety of
configuration options provide you with a tool that is simple to use
yet sophisticated enough for all your needs. BCI51's syntax is very
similar to PC BASICs. Many users prototype in QuickBASIC and then
compile with BCI51.

BCI51 Features
BCI51 supports interrupt-driven, ring buffered, full duplex serial I/O,
an additional serial output, and a Pulse Width Modulation output,
even on a two dollar 8031! Arrays may have up to 65535 elements.
Strings may be up to 255 characters long, and each may be a
different length. BCI51 includes a string concatenation operator to
easily combine string variables and literal text. BCI51 provides
signed and unsigned 8 and 16 bit integer math. BCI51 identifies
many syntactical errors such as improperly nested control loops at
the time of compilation, when they are most easily and inexpen-
sively corrected. BCI51 also provides extensive, flexible run-time
error handling - you can even determine which BASIC line caused
the error!

BCI51's runtime libraries and AI engine automatically take care of
microcontroller reset, initialization, serial I/O, interrupt handling,
startup code, and all interrupt vectors. All numerical routines are
fully re-entrant. You can concentrate on your application instead of
mundane programming chores.
Custom I/O Drivers!
With BCI51 you can easily create your own custom input and output
drivers such as input from a keypad and output to a liquid crystal
display. Your program can even redirect I/O during runtime. For
example, if your program encountered an error, output could be
directed to the serial port instead of an LCD. Examples of this are
included in the printed reference manual and on the program disk.

Flexible Configuration Features:
•Specify text files to include in your source code (just like in C!).
•Define the address of your program, data, and stack.
•Specify baud rates for your console and printer I/O.
•Specify target microcontroller options.
•Control error messages and line number tracing.
•Optionally initialize all variables to 0 and strings to "" at startup.
•Configure error handlers and Control C.

Interrupt Vectors

64K
Bytes

External
or

64-n K Bytes
External and

nK Bytes Internal

8051 FAMILY

Devices Supported:
8031, 80C31, 8032, 80C32, 8051, 80C51, 8052, 80C52, 8751,
87C51, 8752, 87C52. with external RAM. BCI51 PRO adds
support for Dallas DS5000/1/2, DS2250/1/2 and DS5000/1/
2FP, including 'T' versions. Supports DS80C320/520/530 families
in 8051-compatability mode

Requirements: MS-DOS computer with at least 512K bytes
of available RAM and MS-DOS 3.0 or later. Also runs great in a
Windows 3.X or Windows 95 DOS box.

Exceptional Support:
Extensive documentation, phone hotline, 24 hour FAX, and a 24-hour
BBS provide you with outstanding support. All Systronix products
have a 30-day money-back guarantee.

From the simple to the sophisticated, BCI51 gives you exceptional
compiler value.

64K-

32K-

0

64K-

32K-

0

The DS5000 & DS2250/1/2 Secure
Microcontrollers

Board on a Chip!
•8051 - compatible microcontroller core.
•Up to 128K Bytes nonvolatile memory.
•10 year lithium backup battery.
•Realtime Clock and Calender.
•Powerfail Warning, Watchdog Timer, and Automatic Power Down.
•Internal memory leaves I/O ports free for your use.
•Replaces several discrete chips.
•Just add a crystal and a power supply!

The DS5000 is a high performance 8-bit CMOS microcontroller that
contains the equivalent of a single board computer all in one
compact package with many unique benefits. BCI51 is the only
compiler with special support for the DS5000 family, including the
2250 series.

The DS5000 contains an embedded lithium cell that preserves the
contents of the embedded RAM, internal registers, and powers the
real-time clock/calender for ten years in the absence of any external
power source. It has the ability to resume execution when power is
re-applied as if the power failure had not occurred at all. The
DS5000 has a Power Fail Warning Interrupt, Automatic Power
Down mode, a Watchdog timer, and flexible Power On Restart
options. These features ensure crashproof operation and unprec-
edented software adaptability. BCI51 with the DS5000 extensions
adds easy to use BASIC language support for all these unique
hardware functions.

DS5000 I/O includes a full duplex serial port capable of asynchro-
nous or synchronous operation, 32 parallel lines, and two external
interrupts. BCI51 adds a unidirectional asynchronous serial output
with programmable parity, and a Pulse Width Modulated output. You
can easily use the tools provided by BCI51 to create your own
application-specific serial or parallel I/O drivers.

Security Locks and Encryption
In addition, the DS5000 also provides security lock logic and
software encryption, preventing unauthorized access to your
Program/Data stored in the embedded memory. If anyone attempts
to steal your code, the DS5000 simply erases itself.

Quick, Low Cost Development

 "[BCI51] makes a potent development combination with the DS5000TK."
EDN, January 20, 1992

EMBEDDED MEMORYACCESSED VIA EXPANDED BUS

Embedded
Data

Memory

R
an

ge
 A

dd
re

ss
 P

ar
tit

io
n

Ad
dr

es
s

Embedded
Program
Memory

DS5000 FAMILY

 P
ar

tit
io

n
Ad

dr
es

s

Requirements: MS-DOS Computer with at least 512K
bytes of memory, MS-DOS 3.0 or later, and a serial port.

 DS5000 Memory Map

Program Data

No EPROM Programmer or Emulator needed!
The DS5000 features a Serial Loader program contained within a
special on-chip ROM area. The DS5000 can be programmed
through its serial port at up to 19200 baud. You can reprogram or
update your software remotely over a serial communications line or a
standard telephone line using a modem.

DS5000TK
The DS5000TK development kit enables immediate evaluation of any
DS5000 series device. The kit includes program loading and
terminal emulation software, a 16 MHz DS5000T-32K processor,
user's guide, and In-System Loader Pod. The In-System Loader Pod
enables you to load application software into a DS5000 device
while the pod is installed in your target system. With the kit, you can
quickly reprogram the DS5000 without detailed knowledge of the
chip's Serial Load Mode. The DS5000TK also provides an RS232
port which can assist you during debugging, even if your target
has no serial I/O. This kit, with the BCI51 DS5000 support, delivers
a complete, easy-to-use development and programming system at
an unbeatable price.

The DS5000 Family

•The DS5000T features a Real Time Clock and Calender
that keeps time independent of any external power. 8 or 32K
embedded RAM.

•The DS5000FP, DS5001FP, and DS5002FP are 80
pin flat packs and require an external battery and RAM. These
products are intended for very high volume applications.

•The DS2250(T), DS2251(T), and DS2252(T) are
essentially a DS5000 in a SipStick package with up to 128k
bytes of RAM on board.

0,1,0,1,0,1

FFFFH

8000H

4200H
41FFH

4100H
40FFH
403FH
403EH

4003H
4002H
2094H
2093H
2000H
1FFFH

0000H

FFFFH

MTOP+1
MTOP

512+LEN+6
512+LEN

200H/512

1FEH/510

0000H

BASIC-52

"[With BCI51] I went from a dead start to a shipped prototype in 18 days, including a custom
serial I/O driver. On average, it's running 153 times faster than the BASIC-52 interpreter!"

Mark Mueller, Mueller Broadcast Design

BCI51 is the only 8051 compiler that helps you to combine a BASIC-52
interpreter program with a compiled program! Call a compiled program from
BASIC-52, pass values back and forth, and return to BASIC-52 as many
times as you wish. If you have a current BASIC-52 program that you need
to speed up, you can easily compile some or all of it. For the ultimate in
speed, incorporate in-line assembly code. No other programming tool
gives you such seamless integration of interpreted, compiled, and
assembly language code!

BCI51 is the only 8051 BASIC compiler written specifically for real-time
embedded control; it is not just a warmed-over derivative of the 8052AH-
BASIC interpreter. In general, BCI51 supports the syntax of BASIC-52
while freeing you from many of its limits. BCI51 offers enhanced perfor-
mance in areas such as: interrupt response, error handling, serial I/O, data
structures, string handling, and many more. These improvements are
clearly documented in the extensive BCI51 manual.

Interpreters vs. Compilers
The BASIC-52 interpreter is easy-to-use and compact, but has its
restrictions: leisurely execution and I/O speed, no true interrupt handling
(BASIC-52 "interrupts" are actually handled in a polled fashion), and
limited error recovery. These are critical aspects of real-time control
applications. You could spend one or two thousand dollars to struggle
with an 8051 C Compiler, but why? BCI51 delivers the performance of a
compiler with the familiarity of BASIC.

Interpreters
The main advantages of an interpreter are an interactive development
environment and compact program size. When you type RUN, each
tokenized command in your interpreted program is read from memory, and
referenced in a token table. The token is subsequently converted into a
series of nested CALLs to assembly language routines which perform the
appropriate functions. Your program is essentially 'expanded' to assembly
code one command at a time. For this reason, interpreted programs are
very compact, but execute slowly. Because the interpreter analyzes your
source program one token at a time, it has no overall view of your code.
Many errors (such as GOTO a non-existent line number) are not detect-
able until you actually run your program.

Compilers
The BCI51 compiler converts your BASIC source to assembly language
one time only, (at the time of compilation). The 8051 processor executes
compiled code much more quickly than it interprets a tokenized program.
Because the compiler analyzes your program in its entirety, many errors
can be detected and fixed prior to ever running your code. This global
view also gives a compiler the ability to optimize. Compilers use a mixture
of 'in-line' code and calls to 'run-time libraries' . Libraries include often used
routines such as math operations. Compiled programs execute much more
quickly than interpreted programs but are somewhat larger.

Inside BCI51
The BCI51 compiler is a multi-pass optimizing compiler. The compiler emits
an assembly code source file which can be viewed and edited prior to
assembly. The assembly code source is then assembled to 8051
executable machine code by the included Systronix assembler. Other
supported assemblers include Intel, Avocet, or compatibles. The Systronix
A51 assembler may also be used by itself!

The BCI51 run-time function library is written in hand-optimized assembly
code; it is not simply a modification of the BASIC-52 interpreter ROM.
Systronix is continually improving the compiler and libraries. Unlimited
telephone hotline support, 24 hour FAX and BBS lines, free maintenance
releases, and reduced-cost upgrades are available to registered users.

BASIC-52 Acceleration!

Requirements: Access to interrupt vectors at 4003H-
402FH and code/data space not used by your BASIC-52
program.

Available for your use.
Note: Relative partition size not to scale.

BASIC-52 and/or
BCI51 compiled

programs

BASIC-52 Startup options

Available for BCI51
compiled programs

BASIC-52 Call Table

Available
(Above MTOP)

Use for ST@ LD@ and/or
BCI51 compiled

program data space

String, Variable, and
Array Storage

BASIC-52 RAM Program
extends up from 512 to

512 + LEN

Argument Stack and
BASIC-52 parameters

Available

Interrupt Vectors
accessed by BCI51

Available

 Traps and
 Extension Routines

BASIC-52
Interpreter

(Internal ROM)

Code Data

BASIC-52 Memory Map

"Your products have made development a joy!"
James Mason, Programmer

BASIC, C, & Assembly
(a technical note...)
Programming languages are like religion or politics - the question of “right” or “best” is a
matter of interpretation, opinion, and personal preference. When selecting a tool for
any job, it is advisable to ask: what is the best choice in my current situation? Perhaps
the “best” language could be defined as that which gets the job done for you, with the
greatest ease and utility while consuming the minimum of time and effort. The BCI51
compiler is a BASIC compiler, written in C. The BCI51 libraries are written in hand-
optimized 8051 assembly language. This gives us a unique perspective -familiarity with
C, BASIC and assembly code.

Assembly code is like a Formula-One racing car - the ultimate in performance, but
requiring constant attention by specialized mechanics. A Formula-One requires a high
degree of skill to use and is dangerous in the hands of an inexperienced driver. C is
similar to a Ferrari - finicky and expensive, but easier to drive than a Formula-One. A
Ferrari requires considerable skill to reach its maximum performance. BASIC? - a
Volvo with airbags. Maximum safety and reliability, with reasonable performance -and
anyone can drive it. Consider the rough-and-tumble industrial embedded programming
environment to be like an icy road with treacherous turns, on which you want to make
a safe trip in the shortest time possible. Which would you choose?

Assembly language in the hands of a skilled and experienced programmer offers the
ultimate in flexibility and control. Unfortunately, you will either need to purchase
libraries even for simple functions such as math operations and serial I/O or you will
need to write them all yourself! Assembly code is notoriously time-consuming to write
and difficult to modify and maintain. Rather like building a brick house one grain of sand
at a time. Assembly code is cryptic and requires massive commenting to be
understandable.

C is a powerful but difficult-to-master language which originated on large mainframe
computers. C was deliberately written by serious computer programmers for other
serious computer programmers. Programming in C is like building a brick house one
brick at a time. It is more standardized than any other language, and offers the promise
of portability across different execution platforms or targets. This can be an important
consideration in workstations and personal computers. Among full-time computer
scientists, and in academia, C is often the language of choice.

More people know BASIC than any other language. BASIC was specifically written
for people who are not full-time programmers, and as such was designed to be easy to
use. It is possible to learn the rudiments of BASIC in just a few hours. BASIC is
relatively close to English, tends to be self documenting even without comments, and is
highly intuitive. Programming in BASIC is like building a house with prefabricated
modular panels. For all these reasons, BASIC is the most frequently taught language in
public schools. Some version of BASIC is shipped with most personal computers.
BASIC dialects are widely used to program high-end electronic production and test
equipment.

There is a major difference in how C, assembly and BASIC handle errors. The C
language has very little error checking or data validation. For example, allocate 10
bytes to a character array (a text string). A C compiler will be perfectly happy to let
you write 1000 bytes to that string! This clobbers 990 bytes of whatever happens to
follow that string in memory. Assembly language is even worse -it’s completely up to
you to perform even the most low-level data typing manually. In marked contrast,
BCI51 and most BASICs feature extensive built-in data checking and validation which
help you develop your code with a minimum of errors.

How much time, money and patience do you have? Would you rather focus your
attention on chasing obscure bugs in your code or concentrating on your application?
All other things being equal, you can write and debug an embedded application in
BASIC faster than any other language. Many people call us to express their
amazement after developing significant amounts of working code the same day they
receive BCI51.

BCI51 and BCI51-Pro Benefits
and Features
Professional Embedded BASIC Develop professional quality
8051 code with BASIC! Write applications from simple to sophisti-
cated. You don’t have to be a “firmware guru” or spend weeks
learning complicated, expensive tools. Runs on any MS-DOS PC
with 512K RAM and a hard disk. Outputs assembly source code and
Intel Hex files. AI engine helps with otherwise laborious setup and
configuration tasks. True real-time compiled (NOT interpreted) code.

Pick Your Target Compatible with most any 8031/32, 8051/52 or
BASIC-52 system (NMOS or CMOS). Access a full 64K of code and
64K of data. Virtually no hard-coded limits. Bi-directional serial I/O,
serial printer output, Pulse Width Modulator, all supported even on a
two dollar 8031! BCI51-Pro supports Dallas Secure Microcontrollers.

Super I/O Interrupt-driven bidirectional serial port with output and
type-ahead ring buffers. Serial printer output with programmable parity,
data bits and stop bits. Built-in library support for your own custom
polled or interrupt-driven I/O drivers.

Easy Assembly Code Your BASIC program may contain
unlimited instances of in-line assembly code. Call the BCI51 run-time
libraries from your in-line assembly code (complete, commented library
source code is available in the Assembly Language Programmer's
Toolkit). BCI51 generates an assembly source code listing. And you
can use the included 8051 assembler separately.

Powerful Error Handling Sophisticated error checking catches
most program errors at compile time. Flexible run-time error handling
options for robust embedded control systems. Every run-time error
can be trapped. You even get the BASIC line number in which the
error occurred!

Flexible Data Four integer data types (signed and unsigned 8 or
16 bit), arrays of any length (up to 64K), any number of strings of
different lengths, and a string concatenation operator! FAST integer
and character math (floating point upgrade coming).

Works with or without BASIC-52 BCI51 is the only 8051
compiler that helps you to combine a BASIC-52 interpreter program
with a compiled program! Call a compiled program from BASIC-52,
pass values back and forth, and return to BASIC-52 as many times as
you wish. Choose coordinated or independent run trapping and
interrupt handling.

Custom Solutions We can enhance BCI51 with BASIC operators
specific to your needs, while you maintain control of the supporting
library code. Contact us to discuss your requirements.

Real Support Extensive documentation, phone hotline, FAX,
email, and web site. Commitment to ongoing enhancements and a
30-day money-back satisfaction guarantee.

Systronix, Inc.Systronix, Inc.
555 South 300 East #21

Salt Lake City, UT, USA 84111
TEL: +1-801-534-1017
FAX: +1-801-534-1019
WEB: www.systronix.com
EMAIL: info@systronix.com

BCI51 Keywords
Operators & Instructions
/

-

+

+ (string)

*

**

<

<=

<>

= (string)

= (assignment)

= (relational)

>

>=

ABS

AND

ASC

BASLINE

BS

CALL

CBOT

Configuration Directives
BASIC52

CHECK MATH

CHECK ISTACK

CMOS

CODE START

CONSOLE

CONTROL C

DATA START

DEFAULT

INCLUDE

INTERRUPT HANDLERS

ERROR MESSAGES

INITIALIZE VARIABLES

IRAM

ISTACK START

MODE

PRINT COMPLETE

PRINTER

RUN TRAP

TARGET

TIMER1

TIMER2

TRACE LINE NUMBERS

XTAL

CBY

CHR

CLEAR

CLEARI

CLEARS

CLOCK0

CLOCK1

CR

CTOP

DATA

DBOT

DBY

DO-UNTIL

DO-WHILE

DTOP

END

ERRLINE

ERRVALUE

FOR-TO-STEP-NEXT

GET

GOSUB-RETURN

GOTO

IDLE

IE

IF-THEN-ELSE

INPUT

INT

IP

LD@

LEN

LET

LF

MSEC

MTOP

NOT

NULL

ON-GOTO

ON-GOSUB-RETURN

ONERR

ONEX1

ONTIME

O R

S G N

SPC

S Q R

ST@

STRING

T2CON

TAB

TCON

TIME

TIMER0

TIMER1

TIMER2

TMOD

UI0

UI1

UO0

UO1

XBY

XOR

PCON

PH0. and PH1.

PH0.# and PH1.#

PH0.@ or PH1.@

POP

PORT0

PORT1

PORT2

PORT3

PRINT or P. or ?

PRINT# or P.# or ?#

PRINT@ or P.@ or ?.@

PUSH

PWM

RCAP2

READ

REM

RESTORE

RETI

RND

SEED

BCI51-Pro
Dallas Secure
Microcontroller
Additional Keywords

Configuration Directives
TARGET
INCLUDE
ON WATCHDOG
ON POWERUP
ON WARMRESET
ON RUNTRAP
ON POWERFAIL

Watchdog Instructions
WDOG_ON
WDOG_OFF
WDOG_RST

I/O Instructions
PORT0
PORT1
PORT2
PORT3

Embedded Clock/
Calender Instructions
DS_ECC_RD
DS_ECC_WR
DS_ECC_RUN
DS_ECC_MODE
DS_AMPM
DS_YEAR
DS_MONTH
DS_DATE
DS_DAY
DS_HOUR
DS_MIN
DS_SEC
DS_HSEC

P
rin

te
d

on
 R

ec
yc

le
d

P
ap

er

Sample Program
This example calls a compiled program from BASIC-52 and transfers values
in both directions. It illustrates in-line assembly code, enhanced ONERR functions,
multiple-statement lines, and more.

; Configuration section
#TARGET 8052 BASIC52 ;this configures our target
#DATA START 1000H ;compiled data stored beginning here
#CODE START 4200H ;we’ll CALL 4200H from BASIC-52
#PRINTER MODE=4800,7,E,2 ;serial printer 4800 baud 7 data, even par, 2 stop
#PRINT COMPLETE OFF ;for maximum performance

; Declaration section
UNSIGNED INTEGER VAR1, VAR2
STRING STRING1$(33), STR2$(13) ;any name ending in ‘$’ can be a string

; Program body
100 ONERR 500 : CLOCK1 ;set up ONERR handler location
#ASM

cpl T0 ; in line assembly code
#ASM_END
110 STRING1$ = “Some ”: STR2$ = “concatenation”

: STRING1$ = STRING1$ + “string ” + STR2$ +“!”
: ? STRING1$: ?# STRING1$,“ ...on serial printer port”

120 POP VAR1, VAR2 ;get variables from BASIC-52 argument stack
130 ? “From BASIC-52: ”, VAR1, “ and ”, VAR2
140 PUSH MSEC ;push value to BASIC-52
190 ? VAR1/0 ;deliberate error - divide by zero
200 ? “DONE!” : GOTO 999
500 : ? “Error of errvalue ”, ERRVALUE, “ in line ”, ERRLINE
999 END

BASIC-52 program:
100 PUSH 12345 : PUSH 32451 : CALL 4200H : POP X : PRINT “From BCI51:”,X

Output:
Some string concatenation!
From BASIC-52: 32451 and 12345
ERROR (Line 190): Divide by Zero
Error of errvalue 10 in line 190
From BCI51: 165

